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Abstract. A new Lagrangian realizing the symmetry of the M-algebra in eleven-dimensional space-time is
presented. By means of the novel technique of Abelian semigroup expansion, a link between theM-algebra
and the orthosymplectic algebra osp (32| 1) is established, and anM-algebra-invariant symmetric tensor of
rank six is computed. This symmetric invariant tensor is a key ingredient in the construction of the new La-
grangian. The gauge-invariant Lagrangian is displayed in an explicitly Lorentz-invariant way by means of
a subspace separation method based on the extended Cartan homotopy formula.

1 Introduction

String theory and eleven-dimensional supergravity be-
came inextricably linked after the arrival of the M -theory
paradigm. All efforts notwithstanding, the low-energy re-
gime of M -theory remains better known than its non-
perturbative description. However, the possibility has been
pointed out that M -theory may be non-perturbatively
related to, or even formulated as, an eleven-dimensional
Chern–Simons theory [1–4].
Chern–Simons (CS) theory has quite compelling fea-

tures. On the one hand, it belongs to the restricted class
of gauge field theories, with a one-form gauge connection
as the sole dynamical field. On the other hand, and in con-
trast with usual Yang–Mills theory, there is no a priori
metric needed to define the CS Lagrangian, so that the
theory turns out to be background-free. CS supergravi-
ties (see, e.g., [5] and references therein) exist in any odd
number of dimensions; three-dimensional general relativ-
ity was famously quantized by making the connection to
CS [6].
In recent times, an even more appealing generalization

of this idea has been presented, the so-called transgression
form Lagrangians. Transgression forms [7–12] are the ma-
trix that CS forms stem from. The main difference between
CS and transgression forms concerns a new, regularizing
boundary term which renders the transgression form fully
gauge invariant. As a consequence, the boundary condi-
tions and Noether charges computed from a transgression
action have the chance to be physically meaningful.
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Since a gauge field theory for the M -algebra may take
us one step closer to understanding the non-perturbative
description of M -theory, the importance of the formula-
tion of a CS/transgression form theory for the M -algebra
is clear. A priori, the construction of a CS supergravity
for the M -algebra would seem something straightforward
to do, especially since CS supergravities for osp (32| 1)
are already well known [2, 3, 5]. This is, however, not the
case, and the construction is actually highly non-trivial.
The reason is that in both cases, for CS and transgression
forms, the key ingredient in the construction is the invari-
ant tensor. And precisely in the case of the non-semisimple
M -algebra, the direct option of using the supertrace as in-
variant tensor is not a fruitful one.
This problem has been dealt with in [13, 14] using

a physicist’s approach: the Noether method. Starting from
the Poincaré CS Lagrangian, a CS form for theM -algebra
is recursively constructed, adding new terms to finally
reach an invariant Lagrangian. After the Lagrangian is
constructed, it is possible to read back the invariant ten-
sor. This approach has proved successful, but it has some
drawbacks: it requires a lot of physicist’s insight and clever-
ness; and as the authors of [13, 14] make clear, the method
does not rule out the possibility of extra terms in the
Lagrangian.
On the other hand, a more mathematical point of view

has been developed in [15], where the M -algebra has been
shown to correspond to an expansion1 of osp (32| 1). Ex-
pansions stand out among other algebra manipulation

1 The M-algebra (with 583 bosonic generators) is sometimes
regarded in the literature as a contraction of osp (32| 1). That
this cannot be correct can be seen by observing that a con-
traction of osp (32| 1) (with only 528 bosonic generators) would
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methods (such as contractions, deformations and exten-
sions) as the only ones that are able of changing the di-
mension of the algebra; in general, it leads to algebras with
a dimensionality higher than the original one.
In a nutshell, the expansion method considers the ori-

ginal algebra as described by its associatedMaurer–Cartan
(MC) forms on the group manifold. Some of the group par-
ameters are rescaled by a factor λ, and the MC forms are
expanded as a power series in λ. This series is finally trun-
cated in a way that assures the closure of the expanded
algebra. The subject is thoroughly treated in [15–18].
In the expansion approach, the algebra is formulated

in terms of the MC forms, and therefore, the CS form for
the M -algebra must be written through a free differential
algebra series from the full osp (32| 1)-CS form. Again, to
extract from this an invariant tensor for the M -algebra
proves to be non-trivial.
Both approaches focus on constructing directly the CS

form. In this article, a third alternative is considered: the
Lie algebra S-expansion method, which focuses on the
construction of the invariant tensor. This procedure, de-
veloped in general in [19], is formulated in terms of the
original Lie algebra generators and an Abelian semigroup
S. Given this original Lie algebra and the Abelian semi-
group as inputs, the S-expansion method gives as out-
put a new Lie algebra, and besides it, general expressions
for the invariant tensor for it in terms of the semigroup
structure.
The paper is organized as follows. In Sect. 2 the deriva-

tion of the M -algebra as an Abelian semigroup expan-
sion of osp (32| 1) is performed, and a way to construct an
M -algebra-invariant tensor is found. Some aspects of the
transgression Lagrangian are reviewed in Sect. 3, where use
of the subspace separation method produces a new explicit
action for an eleven-dimensional transgression gauge field
theory. In Sect. 4 we comment on the dynamics produced
by the transgressionLagrangian.We close with conclusions
and some final remarks in Sect. 5.

2 TheM-algebra as an S-expansion
of osp (32| 1)

In this section we briefly review the general method of the
Abelian semigroup expansion and its application in obtain-
ing the M -algebra as an S-expansion of osp (32| 1). We
refer the reader to [19] for the details.

2.1 The S-expansion procedure

Consider a Lie algebra g and a finite Abelian semigroup
S = {λα}. According to theorem 3.1 in [19], the direct
product S×g is also a Lie algebra. Interestingly, there are
cases in which it is possible to systematically extract subal-
gebras from S×g. Start by decomposing g in a direct sum

lack the 55 generators of the Lorentz automorphism piece, since
a contraction cannot change the number of generators. For
a thorough discussion of this problem, see [15].

of subspaces, as in

g=
⊕

p∈I

Vp , (1)

where I is a set of indices. The internal subspace structure
of g can be codified through2 the mapping i : I× I → 2I ,
where the subsets i (p, q)⊂ I are such that

[Vp, Vq]⊂
⊕

r∈i(p,q)

Vr . (2)

When the semigroup S can be decomposed in subsets Sp,
S =
⋃
p∈I Sp, such that they satisfy the condition

3

Sp ·Sq ⊂
⋂

r∈i(p,q)

Sr , (3)

then we have that

GR =
⊕

p∈I

Sp×Vp (4)

is a ‘resonant subalgebra’ of S× g (see Theorem 4.2
in [19]).
An even smaller algebra can be obtained when there is

a zero element in the semigroup, i.e., an element 0S ∈ S
such that, for all λα ∈ S, 0Sλα = 0S . When this is the
case, the whole 0S×g sector can be removed from the res-
onant subalgebra by imposing 0S×g= 0. The remaining
piece, to which we refer as an 0S-reduced algebra, con-
tinues to be a Lie algebra (for a proof of this fact and some
more general cases, see the 0S-reduction and Theorem 6.1
in [19]).
In the next section these mathematical tools will be

used in order to show how the M -algebra can be con-
structed from osp (32|1).

2.2 M-algebra as an S-expansion

In this section we roughly sketch the steps to be taken
in order to obtain the M -algebra as an S-expansion of
osp (32|1).
As with any expansion, the first step consists in split-

ting the osp (32| 1) algebra in distinct subspaces. This is
accomplished by defining

V0 =
{
J
(osp)
ab

}
, (5)

V1 =
{
Q(osp)

}
, (6)

V2 =
{
P(osp)a ,Z

(osp)
a1···a5

}
. (7)

Here V0 corresponds to the Lorentz algebra, V1 to the
fermions and V2 to the remaining bosonic generators,

2 Here 2I denotes the set of all subsets of I.
3 Here Sp ·Sq ⊂ S is defined as the set that includes all prod-
ucts between all elements from Sp and all elements from Sq.
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namely AdS boosts and the M5-brane piece. The al-
gebraic structure satisfied by these subspaces is com-
mon to every superalgebra, as can be seen from the
equations

[V0, V0]⊂ V0 , (8)

[V0, V1]⊂ V1 , (9)

[V0, V2]⊂ V2 , (10)

[V1, V1]⊂ V0⊕V2 , (11)

[V1, V2]⊂ V1 , (12)

[V2, V2]⊂ V0⊕V2 . (13)

The second step is particular to the method of
S-expansions and deals with finding an Abelian semigroup
S that can be partitioned in a ‘resonant’ way with re-
spect to (8)–(13). This semigroup exists and is given by

S
(2)
E = {λ0, λ1, λ2, λ3}, with the defining product

λαλβ =

{
λα+β , when α+β ≤ 2 ,
λ3, otherwise .

(14)

A straightforward but important observation is that,
for each λα ∈ S

(2)
E , λ3λα = λ3, so that λ3 plays the role of

the zero element inside S
(2)
E .

Consider now the partition S
(2)
E = S0∪S1∪S2, with

S0 = {λ0, λ2, λ3} , (15)

S1 = {λ1, λ3} , (16)

S2 = {λ2, λ3} . (17)

This partition is said to be resonant, since it satisfies
(compare (8)–(13) with (18)–(23))

S0 ·S0 ⊂ S0 , (18)

S0 ·S1 ⊂ S1 , (19)

S0 ·S2 ⊂ S2 , (20)

S1 ·S1 ⊂ S0∩S2 , (21)

S1 ·S2 ⊂ S1 , (22)

S2 ·S2 ⊂ S0∩S2 . (23)

Theorem 4.2 in [19] now assures us that

GR = (S0×V0)⊕ (S1×V1)⊕ (S2×V2) (24)

is a resonant subalgebra of S
(2)
E ×g.

As a last step, impose the condition λ3×g= 0 on GR
and relabel its generators as in Table 1. This procedure
gives us the M -algebra, whose (anti-) commutation rela-
tions are recalled in Table 2.
A clearer picture of the algebra’s structure can be

obtained from the diagram in Fig. 1. The subspaces of
osp (32| 1) are represented on the horizontal axis, and the
semigroup elements on the vertical one. The shaded region
on the left corresponds to the resonant subalgebra, includ-
ing the λ3×osp (32| 1) sector, which is mapped to zero via
the 0S-reduction. The gray sector on the right corresponds

Table 1. The M-algebra can be regarded

as an S
(2)
E -expansion of osp (32| 1). The

table shows the relation between genera-
tors from both algebras. The three levels
correspond to the three columns in Fig. 1
or, alternatively, to the three subsets into

which S
(2)
E has been partitioned

GR subspaces Generators

S0×V0 Jab = λ0J
(osp)
ab

Zab = λ2J
(osp)
ab

0 = λ3J
(osp)
ab

S1×V1 Q = λ1Q
(osp)

0= λ3Q
(osp)

S2×V2 Pa = λ2P
(osp)
a

Zabcde = λ2Z
(osp)
abcde

0 = λ3P
(osp)
a

0 = λ3Z
(osp)
abcde

Table 2. (Anti-) commutation relations for the M-algebra.
Here the Γa are the Dirac matrices in d= 11

[
J ab,Jcd

]
= δabfecd J

e
f (25)[

J ab,Pc
]
= δabecP

e (26)[
J ab,Zcd

]
= δabfecdZ

e
f (27)

[
J ab,Zc1···c5

]
=
1

4!
δabe1···e4dc1···c5

Z de1···e4 (28)

[Jab,Q ] =−
1

2
ΓabQ (29)

[Pa,Pb] = 0 (30)

[Pa,Zbc] = 0 (31)[
Pa,Zb1···b5

]
= 0 (32)

[Zab,Zcd] = 0 (33)

[Zab,Zc1···c5 ] = 0 (34)[
Za1···a5 ,Zb1···b5

]
= 0 (35)

[Pa,Q ] = 0 (36)

[Zab,Q ] = 0 (37)

[Zabcde,Q ] = 0 (38)

{
Q , Q̄

}
=
1

8

(
Γ aPa−

1

2
Γ abZab+

1

5!
Γ abcde−Zabcde

)
(39)

to the M -algebra itself. The diagram allows us to graphi-
cally encode the subset partition (15)–(17) on each column
andmakes checking the closure of the algebra a straightfor-
ward matter.
Large sectors of the resonant subalgebra are Abelian-

ized after imposing the condition λ3× osp (32| 1) = 0.
This condition also plays a fundamental role in the shap-
ing of the invariant tensor for the M -algebra as an
S-expansion of osp (32| 1). In this way, its effects are
felt all the way down to the theory’s specific dynamic
properties.
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Fig. 1. a The shaded region
denotes the resonant subalge-
bra GR. b Shaded areas cor-
respond to the M-algebra it-
self, which is obtained from
GR by mapping the λ3×
osp (32| 1) sector to zero

2.3 M-algebra-invariant tensor

Finding all possible invariant tensors for an arbitrary al-
gebra remains, to the best of our knowledge, an import-
ant open problem. Nevertheless, once a matrix represen-
tation for a Lie algebra is known, the (super-) trace al-
ways provides us with an invariant tensor. But precisely
in our case, this is not a wise choice: in general, it is pos-
sible to prove that when the condition 0S× g = 0 is im-
posed, the supertrace for the S-expanded algebra genera-
tors will correspond to just a very small piece of the whole
(super-) trace for the g-generators. For the particular case
of theM -algebra, the only non-vanishing component of the
supertrace is Tr (Ja1b1 · · ·Janbn). A CS Lagrangian con-
structed with this invariant tensor would lead to an ‘exotic
gravity’, where the fermions, the central charges and even
the vielbein would be absent from the invariant tensor. For
this reason, it becomes a necessity to work out other kinds
of invariant tensors; very interesting work on precisely this
point has been developed in [13, 14], where an invariant
tensor for theM -algebra is obtained from the Noether me-
thod, finally leading to a CS M -algebra supergravity in
eleven dimensions.
In the context of an S-expansion, Theorems 7.1 and 7.2

in [19] provide us with non-trivial invariant tensors differ-
ent from the supertrace.
Let λα1 , . . . , λαn ∈ S be arbitrary elements of the semi-

group S. Their product can be written as

λα1 · · ·λαn = λγ(α1,... ,αn) . (40)

This product law can conveniently be encoded by the
n-selector K ρ

α1···αn , which is defined as

K ρ
α1···αn

=

{
1, when ρ= γ (α1, . . . , αn) ,
0, otherwise .

(41)

Theorem 7.1 in [19] states that

〈
T(A1,α1) · · ·T(An,αn)

〉
= αγK

γ
α1···αn

〈TA1 · · ·TAn〉
(42)

corresponds to an invariant tensor for the S-expanded
algebra without 0S-reduction, where αγ are arbitrary
constants.
When the semigroup contains a zero element 0S ∈ S,

a smaller algebra can be obtained by ‘0S-reducing’ the
S-expanded algebra, i.e., by mapping all elements of the
form 0S×g to zero. Writing λi for the non-zero elements of
S, Theorem 7.2 in [19] assures us that

〈
T(A1,i1) · · ·T(An,in)

〉
= αjK

j
i1···in

〈TA1 · · ·TAn〉 (43)

is an invariant tensor for the 0S-reduced algebra, with
αj being arbitrary constants. As can be seen by com-
paring (42) with (43), this invariant tensor corresponds to
a ‘pruning’ of (42).
In the M -algebra case, one must compute the com-

ponents of K j
i1···i6

for S
(2)
E . Using the multiplication

law (14), these are easily seen to be

K
j

i1···i6
= δji1+···+i6 , (44)

where δ is the Kronecker delta.
Using (43) and (44), we see that the only non-

vanishing components of the M -algebra-invariant tensor
are given by

〈Ja1b1 · · ·Ja6b6〉M = α0 〈Ja1b1 · · ·Ja6b6〉osp , (45)

〈Ja1b1 · · ·Ja5b5Pc〉M = α2 〈Ja1b1 · · ·Ja5b5Pc〉osp ,

(46)

〈Ja1b1 · · ·Ja5b5Za6b6〉M = α2 〈Ja1b1 · · ·Ja6b6〉osp , (47)

〈Ja1b1 · · ·Ja5b5Zc1···c5〉M = α2 〈Ja1b1 · · ·Ja5b5Zc1···c5〉osp ,

(48)〈
QJ a1b1 · · ·Ja4b4Q̄

〉
M
= α2

〈
QJ a1b1 · · ·Ja4b4Q̄

〉
osp
,

(49)

where α0 and α2 are arbitrary constants.
It is noteworthy that this invariant tensor for the

M -algebra, even if it possesses many more non-zero terms
than the supertrace (which would consist of (45) alone),
still misses a lot of other terms present in that for
osp (32|1). This is a common feature of 0S-reduced alge-
bras. In stark contrast, S-expanded algebras that do not
arise from a 0S-reduction process do have invariant ten-
sors larger than the one for the original algebra. This fact
shapes the dynamics of the theory to a great extent, as we
shall see in Sect. 4.
The supersymmetrized supertrace will be used to pro-

vide an invariant tensor for osp (32| 1), with the 32× 32
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Dirac matrices in eleven dimensions as a matrix represen-
tation for the bosonic subalgebra, sp (32). The represen-
tation with Γ1 · · ·Γ11 =+1 was chosen. In order to write
the Lagrangian, field equations and boundary conditions,
it is very useful to have the components of the osp (32| 1)-
invariant tensor with its indices contracted with arbitrary
tensors. An explicit calculation gives

La1b11 · · ·La5b55 Bc1 〈Ja1b1 · · ·Ja5b5Pc〉osp

=
1

2
εa1···a11L

a1a2
1 · · ·La9a105 B

a11
1 , (50)

L
a1b1
1 · · ·La6b66 〈Ja1b1 · · ·Ja6b6〉osp

=
1

3

∑

σ∈S6

[
1

4
Tr
(
Lσ(1)Lσ(2)

)
Tr
(
Lσ(3)Lσ(4)

)

×Tr
(
Lσ(5)Lσ(6)

)

−Tr
(
Lσ(1)Lσ(2)Lσ(3)Lσ(4)

)
Tr
(
Lσ(5)Lσ(6)

)

+
16

15
Tr
(
Lσ(1)Lσ(2)Lσ(3)Lσ(4)Lσ(5)Lσ(6)

)]
, (51)

La1b11 · · ·La5b55 Bc1···c55 〈Ja1b1 · · ·Ja5b5Zc1···c5〉osp =

1

3
εa1···a11

∑

σ∈S5

[
−
5

4
La1a2
σ(1) · · ·L

a7a8
σ(4)

[
Lσ(5)

]
bc
Bbca9a10a115

+10La1a2σ(1) L
a3a4
σ(2) L

a5a6
σ(3)

[
Lσ(4)

]a7
b

[
Lσ(5)

]a8
c
B
bca9a10a11
5

+
1

4
L
a1a2
σ(1) L

a3a4
σ(2) L

a5a6
σ(3) B

a7···a11
5 Tr

(
Lσ(4)Lσ(5)

)

− La1a2σ(1) L
a3a4
σ(2)

[
Lσ(3)Lσ(4)Lσ(5)

]a5a6 Ba7···a115

]
, (52)

La1b11 · · ·La4b44 χ̄αζ
β
〈
QαJa1b1 · · ·Ja4b4Q̄β

〉
osp

=−
1

240
εa1···a8abcL

a1a2
1 · · ·La7a84 χ̄Γ abcζ

+
1

60

∑

σ∈S4

[
3

4
Tr
(
Lσ(1)Lσ(2)

)
La1a2
σ(3) L

a3a4
σ(4) χ̄Γa1···a4ζ

−2La1a2σ(1)

[
Lσ(2)Lσ(3)Lσ(4)

]a3a4 χ̄Γa1···a4ζ

+
3

4
Tr
(
Lσ(1)Lσ(2)

)
Tr
(
Lσ(3)Lσ(4)

)
χ̄ζ

− Tr
(
Lσ(1)Lσ(2)Lσ(3)Lσ(4)

)
χ̄ζ
]
, (53)

where Tr stands for the trace in the Lorentz indices, i.e.
Tr (LiLj) = (Li)

a
b (Lj)

b
a.

3 TheM-algebra Lagrangian

We consider a gauge theory on an orientable (2n+1)-
dimensional manifoldM defined by the action

S
(2n+1)
T

[
A, Ā

]
=

∫

M

L
(2n+1)
T

(
A, Ā

)
, (54)

with the Lagrangian

L
(2n+1)
T

(
A, Ā

)
= kQ

(2n+1)

A←Ā

= (n+1)k

∫ 1

0

dt 〈θFnt 〉 . (55)

HereA denotes anM -algebra-valued, one-form gauge con-
nection

A= ω+e+b2+b5+ ψ̄, (56)

and similarly for Ā. In (56) each term takes values on a dif-
ferent subspace of theM -algebra, namely

ω =
1

2
ωabJab , (57)

e = eaPa , (58)

b2 =
1

2
bab2 Zab , (59)

b5 =
1

5!
babcde5 Zabcde , (60)

ψ̄ = ψ̄αQ
α . (61)

In (54), k is an arbitrary constant, θ=A−Ā,At = Ā+
tθ, and Ft = dAt+A

2
t . The Lagrangian (55) corresponds

to a transgression form [7–12]. Transgression forms are in-
timately related to CS forms, since they can be written as
the difference of two CS forms plus a boundary term. The
presence of this crucial boundary term cures some patholo-
gies present in standard CS theory, such as ill-defined con-
served charges [11].
The general form of the Lagrangian given in (55) suf-

fices in order to derive field equations, boundary conditions
and Noether charges. Nevertheless, an explicit version is
highly desirable because it clearly shows the physical con-
tent of the theory; in particular, a separation in bulk
and boundary contributions is essential. This important
task can be painstakingly long if approached naively, i.e.
through the sole use of Leibniz’s rule. A way out of the
bog is provided by the subspace separation method pre-
sented in [9, 12]. This method serves a double purpose; on
one hand, it splits the Lagrangian in bulk and boundary
terms and, on the other, it allows for the separation of
the bulk Lagrangian in reflection of the algebra’s subspace
structure. The method is based on the iterative use of the
‘triangle equation’

Q
(2n+1)

A←Ā
=Q

(2n+1)

A←Ã
+Q

(2n+1)

Ã←Ā
+dQ

(2n)

A←Ã←Ā
. (62)

Equation (62) expresses a transgression form Q
(2n+1)

A←Ā
as

the sum of two transgression forms depending on an arbi-
trary one-form Ã plus a total derivative. This last term has
the form

Q
(2n)

A←Ã←Ā
≡

n (n+1)

∫ 1

0

dt

∫ t

0

ds
〈(
A− Ã

)(
Ã− Ā

)
Fn−1st

〉
,

(63)

where

Ast = Ā+ s
(
A− Ã

)
+ t
(
Ã− Ā

)
, (64)

Fst = dAst+A
2
st . (65)

A first splitting of the Lagrangian (55) is achieved by
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introducing the intermediate connection Ã= ω̄,

L
(
A, Ā

)
=Q

(11)
A←ω̄+Q

(11)

ω̄←Ā
+dQ

(10)

A←ω̄←Ā
, (66)

and a second one by separatingQ
(11)
A←ω̄ through ω:

Q
(11)
A←ω̄ =Q

(11)
A←ω+Q

(11)
ω←ω̄+dQ

(10)
A←ω←ω̄ . (67)

After these two splittings, the Lagrangian (55) reads

L
(
A, Ā

)
=Q

(11)
A←ω−Q

(11)

Ā←ω̄
+Q

(11)
ω←ω̄+dB

(10) , (68)

with

B(10) =Q
(10)
A←ω←ω̄+Q

(10)

A←ω̄←Ā
. (69)

The first two terms in (68) are identical (with the obvious
replacements), and we shall mainly concentrate on analyz-
ing them. The third term will be shown to be unrelated
to the two former; in particular, it can be made to vanish
without affecting the rest. The boundary term (69) can be
written in a more explicit way by going back to (63) and
replacing the relevant connections and curvatures. The re-
sult is, however, not particularly illuminating and, as its
explicit form is not needed in order to write boundary con-
ditions, we shall not elaborate any longer on it.
Let us examine the transgression formQ

(11)
A←ω. The sub-

space separation method can be used again in order to
write down a closed expression for it. To this end we intro-
duce the following set of intermediate connections:

A0 = ω , (70)

A1 = ω+e , (71)

A2 = ω+e+b2 , (72)

A3 = ω+e+b2+b5 , (73)

A4 = ω+e+b2+b5+ ψ̄ . (74)

The triangle equation (62) allows us to split the transgres-

sion Q
(11)
A4←A0

following the pattern

Q
(11)
A4←A0

=Q
(11)
A4←A3

+Q
(11)
A3←A0

+dQ
(10)
A4←A3←A0

,

(75)

Q
(11)
A3←A0

=Q
(11)
A3←A2

+Q
(11)
A2←A0

+dQ
(10)
A3←A2←A0

,

(76)

Q
(11)
A2←A0

=Q
(11)
A2←A1

+Q
(11)
A1←A0

+dQ
(10)
A2←A1←A0

.

(77)

Proceeding along these lines one arrives at the
Lagrangian

Q
(11)
A4←A0

= 6

[
Hae

a+
1

2
Habb

ab
2

+
1

5!
Habcdeb

abcde
5 −

5

2
ψ̄RDωψ

]
. (78)

All three boundary terms that should in principle ap-
pear in (78) cancel due to the very particular properties of
the invariant tensor chosen (cf. (45)–(49)).

The tensorsHa, Hab, Habcde andR are defined as

Ha ≡
〈
R5Pa

〉
M
, (79)

Hab ≡
〈
R5Zab

〉
M
, (80)

Habcde ≡
〈
R5Zabcde

〉
M
, (81)

Rαβ ≡
〈
QαR4Q̄β

〉
M
. (82)

Explicitly using the invariant tensor (50)–(53) one finds

Ha =
α2

64
R(5)a , (83)

Hab = α2

[
5

2

(
R4−

3

4
R2R2

)
Rab+5R

2R3ab−8R
5
ab

]
,

(84)

Habcde =−
5

16
α2

[
5R[abR

(4)
cde]+40R

f
[aR

g
bR
(3)
cde]fg

−R2R(3)abcde+4R
(2)
abcdefg

(
R3
)fg]

, (85)

R=−
α2

40

{(
R4−

3

4
R2R2

)
1+

1

96
R
(4)
abcΓ

abc

−
3

4

[
R2Rab−

8

3

(
R3
)ab
]
RcdΓabcd

}
. (86)

Here we have used the shortcuts4

Rn =Ra1a2 · · ·R
an
a1
, (87)

Rnab =Rac1R
c1
c2
· · ·R

cn−1
b , (88)

R
(n)
a1···ad−2n = εa1···ad−2nb1···b2nR

b1b2 · · ·Rb2n−1b2n .
(89)

In Sect. 4 we shall comment on the dynamics produced
by this Lagrangian; here we may already note that no

derivatives of ea, bab2 or b
abcde
5 appear. This can be traced

back to the particular form of the invariant tensor ((45)–
(49)), which contains no non-zero components of the form〈
J 3PZ 2

〉
, etc.

The last contribution to the Lagrangian (68) comes
from the Qω←ω̄ term. Taking into account the definition of
a transgression form and the form of the invariant tensor, it
is straightforward to write down the expression

Q
(11)
ω←ω̄ = 3

∫ 1

0

dtθabLab (t) , (90)

where

Lab (t) =
〈
R5tJab

〉
M
, (91)

and

Rt =
1

2
[Rt]

ab
Jab , (92)

[Rt]
ab
= R̄ab+ tDω̄θ

ab+ t2θacθ
cb . (93)

4 The trace of the product of an odd number of Lorentz cur-
vatures vanishes: R2n+1 = 0.
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An explicit version for Lab (t) reads

Lab (t) = α0

[
5

2

(
R4t −

3

4
R2tR

2
t

)
[Rt]ab

+5R2t [Rt]
3
ab−8 [Rt]

5
ab

]
. (94)

A few comments are in order. As seen in (94), Q
(11)
ω←ω̄ is

proportional to α0, as opposed to all other terms, which
are proportional to α2. This is a direct consequence of the
choice of invariant tensor. Being the only piece in the La-
grangian unrelated to α2, it can be removed by simply
picking α0 = 0. This independence also means that Q

(11)
ω←ω̄

is by itself invariant under the M -algebra. This is related
to the fact that this term corresponds to the only surviving
component when the supertrace is used to construct the
invariant tensor.
Because of its form, Q

(11)
ω←ω̄ apparently contains a bulk

interaction of the ω and ω̄ fields. This is no more than an il-
lusion; in order to realize this, it suffices to use the ‘triangle
equation’ with the middle connection set to zero,

Q
(11)
ω←ω̄ =Q

(11)
ω←0−Q

(11)
ω̄←0+dQ

(10)
ω←0←ω̄. (95)

Here Q
(11)
ω←0 and Q

(11)
ω̄←0 correspond to two independent CS

exotic-gravity Lagrangians and Q
(10)
ω←0←ω̄ corresponds to

the boundary piece relating them.

3.1 Relaxing coupling constants

All results so far have been obtained from the invariant ten-
sor given in (50)–(53). This in turn was derived from the
supersymmetrized supertrace of the product of six super-
matrices representing as many osp (32| 1) generators. In
particular, we have used 32×32 Dirac matrices in d = 11
to represent the bosonic sector, so that the bosonic com-
ponents of the invariant tensor correspond to their sym-
metrized trace [20, 21].
Different invariant tensors may be obtained by consid-

ering symmetrized products of traces, as in 〈F p〉 〈Fn−p〉.
To exhaust all possibilities one must consider the partitions
of six (which is the order of the desired invariant tensor).
A moment’s thought shows that, apart from the already
considered 6 = 6 partition, only the 6 = 4+2 and 6 = 2+
2+2 cases contribute, as all others identically vanish. We
are thus led to consider the following linear combination:

〈· · ·〉M = 〈· · ·〉6+β4+2 〈· · ·〉4+2+β2+2+2 〈· · ·〉2+2+2 .
(96)

(The coefficient in front of 〈· · ·〉6 can be normalized to
unity without any loss of generality.)
The amazing result of performing this exercise is that

no new terms appear in the invariant tensor (96); rather,
the original rigid structure found in (50)–(53) is relaxed
into one that takes into account the new coupling constants
β4+2 and β2+2+2. Turning these constants on and off one
finds that there are several distinct sectors, which are by
themselves invariant, so that it is perfectly sensible to asso-
ciate them with different couplings.

The net effect on the Lagrangian (78) concerns only the
explicit expressions for the tensors defined in (79)–(82); the
new versions read

Ha =
α2

64
R(5)a , (97)

Hab = α2

[
5

2

(
κ15R

4−
3

4
γ5R

2R2
)
Rab

+5κ15R
2R3ab−8R

5
ab

]
, (98)

Habcde =−
5

16
α2

[
5R[abR

(4)
cde]+40R

f
[aR

g
bR
(3)
cde]fg

− κ15R
2R
(3)
abcde+4R

(2)
abcdefg

(
R3
)fg]

, (99)

R=−
α2

40

{[
κ3R

4−
3

4
(5γ9−4)R

2R2
]
1

+
1

96
R
(4)
abcΓ

abc

−
3

4

[
κ9R

2Rab−
8

3

(
R3
)ab
]
RcdΓabcd

}
.

(100)

The constants κn and γn are not, as it may seem, an in-
finite tower of arbitrary coupling constants, but are rather
tightly constrained by the relations

κm = 1+
n

m
(κn−1) , (101)

γm = γn+
( n
m
−1
)
(κn−1) . (102)

These two sets of constants replace the above β4+2 and
β2+2+2; once a representative from every one of them has
been chosen, the rest is univocally determined by (101)–
(102). In other words, fixing one particular κn sets the
values of all others. Once all κn are fixed, choosing one γn
ties together all the γ.
The original coupling constants β4+2 and β2+2+2 can be

expressed in terms of the new κn and γn as
5

β4+2 =
1

Tr (1)
n (κn−1) , (103)

β2+2+2 =
15

[Tr (1)]
2 (γn−κn) . (104)

It is also worth to notice that

β4+2 = 0 ⇔ κn = 1 , (105)

β2+2+2 = 0 ⇔ γn = κn . (106)

3.2 Comparison between the S-expansion
Lagrangian (78) and the HTZ Lagrangian ([14])

In [14], an action for an eleven-dimensional gauge theory
for theM -algebra was found through the Noether proced-
ure. The corresponding Lagrangian can be cast in the form

Lα =Gae
a+
1

2
Gabb

ab
2 +

1

5!
Gabcdeb

abcde
5 −

5

2
ψ̄QDωψ ,

(107)

5 Here 1l denotes the 32×32 identity matrix, whence Tr (1l) =
32.
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where

Ga =R
(5)
a , (108)

Gab =−32 (1−α)
[(
R4−2R2R2

)
Rab

+ 5R2R3ab−4R
5
ab

]
, (109)

Gabcde =−
5

16
(64α)R[abR

(4)
cde], (110)

Q=
64

5

[
1

96
R
(4)
abcΓ

abc

−
1

2
(1−α)

(
R2Rab−R

3
ab

)
RcdΓ

abcd

]
. (111)

Here α is an arbitrary constant.
In our work we have obtained the Lagrangian (78),

L=Hae
a+
1

2
Habb

ab
2 +

1

5!
Habcdeb

abcde
5 −

5

2
ψ̄RDωψ , (112)

whereHa,Hab, Habcde andR are given in (97)–(100).
The advantage of writing both Lagrangians in this way

is that it makes it easier to compare (107) with (112) just
by matching the coefficients Ha, Hab, Habcde and R with
Ga, Gab, Gabcde and Q.
Besides an overall multiplicative constant6, the Lagran-

gian (107) possesses two tunable independent constants,κn
and γn, and the Lagrangian (112) possesses just one, α. An
interestingquestion is if there is someparticular choiceof the
κ and the γ that allows us to reobtain the HTZ Lagrangian.
Interestingly, the answer is no. As amatter of fact, it can be
seen by simple inspection of the expressions forHabcde and
Gabcde that in the S-expansionLagrangiannew terms arise,
which cannot be wiped out by a simple choice of the κ and
γ constants. Nevertheless, there are some choices that bring
both Lagrangians closer. For example, the identification

κ15 =
α−1

5
, (113)

γ5 =
8

15
(α−1) (114)

allows us to identify some terms of Hab with the ones
in Gab. In the same way, the attempt to match (100)
and (111) leads to a system of equations that has a solution
under some conditions.
Thus the comparison between the Lagrangians (78)

and (107) shows the independence between them. The La-
grangian that arises from the S-expansion procedure con-
tains all the terms of the HTZ Lagrangian, along with new
terms that cannot be made to vanish by a simple choice of
constants.

4 Dynamics

4.1 Field equations and four-dimensional dynamics

The field equations forA and Ā are completely analogous,
and therefore in this section they will be presented only

6 In the Lagrangian (107), this overall constant corresponds to
α2. It proves convenient to set this constant α2 = 64 in order to
ease the comparison; see (97) and (108).

forA. The general expression for the field equations reads

〈
F 5TA

〉
M
= 0 , (115)

where {TA, A= 1, . . . ,dim (g)} is a basis for the algebra
and F is the curvature.
The field equations obtained by varying ea, bab2 , b

a1···a5
5

and ψ are given by

Ha = 0 , (116)

Hab = 0 , (117)

Habcde = 0 , (118)

RDωψ = 0 , (119)

where explicit expressions for Ha, Hab, Habcde and R can
be found in (97)–(100). The field equation obtained from
varying ωab reads

Lab−10
(
Dωψ̄

)
Zab (Dωψ)

+5Habc

(
T c+

1

16
ψ̄Γ cψ

)

+
5

2
Habcd

(
Dωb

cd−
1

16
ψ̄Γ cdψ

)

+
1

24
Habc1···c5

(
Dωb

c1···c5+
1

16
ψ̄Γ c1···c5ψ

)
= 0 ,

(120)

where we have defined

Lab ≡
〈
R5Jab

〉
M
, (121)

(Zab)
α
β ≡
〈
QαR3JabQ̄β

〉
M
, (122)

Habc ≡
〈
R4JabPc

〉
M
, (123)

Habcd ≡
〈
R4JabZcd

〉
M
, (124)

Habcdefg ≡
〈
R4JabZcdefg

〉
M
. (125)

Explicit versions for these quantities are found using
the invariant tensor (50)–(53):

Lab = α0

[
5

2

(
R4−

3

4
R2R2

)
Rab+5R

2R3ab−8R
5
ab

]
,

(126)

Zab =
α2

40

{
2

(
R3ab−

3

4
R2Rab

)
1−

1

48
R
(3)
abcdeΓ

cde

−
3

4

(
RabR

cd−
1

2
R2δcdab

)
RefΓcdef

−
[
δcgabRghR

hdRef −RcaR
d
bR
ef

+
1

2
δefab
(
R3
)cd
]
Γcdef

}
, (127)

Habc =
α2

32
R
(4)
abc , (128)



F. Izaurieta et al.: Eleven-dimensional gauge theory for theM-algebra . . . 683

Habcd = α2δ
ef
ab δ

gh
cd

[
3

4
R2RefRgh−R

3
efRgh−RefR

3
gh

−
4

5

(
RehR

3
fg+R

3
ehRfg−R

2
ehR

2
fg

)

+
1

2
R2RehRfg+

1

8
η[ef ][gh]

(
R4−

3

4
R2R2

)

− ηfg

(
R2R2eh−

8

5
R4eh

)]
, (129)

Habc1···c5 =
α2

80
δcdefgc1···c5

[
−
5

3
R
(3)
abcdeRfg−

1

6
RabR

(3)
cdefg

+10R
(2)
abcdepqR

p
fR
q
g−
2

3
R
(1)
abcdefgpq

(
R3
)pq

+
1

3
RpaR

q
bR
(2)
cdefgpq−

1

3
RqaR

(2)
bcdefgpR

p
q

+
1

4
R2R

(2)
abcdefg+

1

3
RqbR

(2)
acdefgpR

p
q

−
10

3
ηgaR

(3)
bcdepR

p
f +
10

3
ηgbR

(3)
acdepR

p
f

−
5

24
η[ab][cd]R

(4)
efg

]
. (130)

They satisfy the relationships

Hc =
1

2
RabHabc , (131)

Hcd =
1

2
RabHabcd , (132)

Hcdefg =
1

2
RabHabcdefg , (133)

R=
1

2
RabZab . (134)

The problem of finding a ‘true vacuum’ can be analyzed
in a way similar to the way of [13, 14], leading to some re-
sults of the above-mentioned references: it is not possible
to reproduce four-dimensional general relativity, because
there are too many constraints on the four-dimensional
geometry.7

There are several ways in which one could deal with this
problem; as we will discuss in the conclusions, the excess
of constraints is strongly related to the semigroup choice
made in order to construct the M -algebra and also to the
0S-reduction. When other semigroups are chosen, different
algebras can arise that reproduce several features of the
M -algebra without having its ‘dynamical rigidity’ [19].

5 Summary and conclusions

The construction of a transgression gauge field theory for
the M -algebra has been developed through the use of two
sets of mathematical tools. The first of these sets was pro-
vided in [19], where the procedure of expansion is analyzed
using Abelian semigroups and non-trace-invariant tensors
for this kind of algebras are written. The problem of the in-
variant tensor is far from trivial; as discussed in [19], the

7 For an analysis of a similar situation which arises in five
dimensions, see [22].

0S-reduction procedure that was necessary in order to con-
struct the M -algebra from osp (32| 1) also renders the su-
pertrace, usually used as invariant tensor, almost useless.
The other set of tools is related with properties of trans-
gression forms, and especially with the subspace separation
method [9, 12], used in order to write down the Lagrangian
in an explicit way.
From a physical point of view, it is very compelling

that, using the methods of ‘dynamical dimensional re-
duction’ introduced in [13, 14], something that looks like
a ‘frozen’ version of four-dimensional Einstein–Hilbert
gravity with positive cosmological constant is obtained
by simply abandoning the prejudice that the vacuum
should satisfy F = 0. This dynamics ‘freezing’ is a conse-
quence of the constrained form of the invariant tensor: the
M -algebra has more generators than osp (32| 1), but less
non-vanishing components on the invariant tensor. For this
reason, the equations of motion associated to the varia-

tions of ea, bab2 and b
a1···a5
5 become simply constraints on

the gravitational sector. But the poor form of the invariant
tensor is a direct consequence of the 0S-reduction proced-
ure. As shown in Theorem 7.1 in [19], an invariant tensor
for a generic S-expanded algebra without 0S-reduction has
more non-vanishing components than its 0S-reduced coun-
terpart and, in general, even more components than the
invariant tensor of the original algebra.
The above considerations make it evident that it would

be advisable to avoid the 0S-reduction. The M -algebra
arises as the 0S-reduction of the resonant subalgebra given
by (24). This resonant subalgebra itself looks very much
like theM -algebra, in the sense that it has the anticommu-
tator

{
Q , Q̄

}
=
1

8

(
Γ aPa−

1

2
Γ abZab+

1

5!
Γ a1···a5Za1···a5

)
,

(135)

but it also has an osp (32| 1) subalgebra (spanned by λ3Jab,
λ3Pa, λ3Za1···a5 and λ3Q ; let us remember that λ3λ3 =
λ3). The ‘central charges’ are no longer Abelian; rather,
their commutators take values on the λ3×osp (32| 1) sec-
tor. This algebra has a much bigger tensor than the ‘nor-
mal’ M -algebra (see Theorem 7.1 in [19]), and therefore,
‘unfrozen’ dynamics which has good chances of reproduc-
ing four-dimensional Einstein–Hilbert gravity.
A more elegant choice of algebra is also shown in [19].

Replacing the M -algebra’s semigroup S
(2)
E for the cyclic

group Z4, a resonant subalgebra of Z4×osp (32| 1) is ob-
tained. It has very interesting features, like two fermionic
charges, Q and Q ′, with anM -algebra-like anticommuta-
tor
{
Q ′, Q̄ ′

}
=
{
Q , Q̄

}

=
1

8

(
Γ aPa−

1

2
Γ abZab+

1

5!
Γ a1···a5Za1···a5

)
.

(136)

Two sets of AdS boost generators, Pa and P
′
a, and two

(non-Abelian) ‘M5’ generators, Za1···a5 and Z
′
a1···a5

, are

also present. This doubling in several generators makes it
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specially suitable to construct a transgression gauge field
theory. On the other hand, since Z4 is a discrete group,
it does not have a zero element; therefore, it has from
the outset very good chances of having unfrozen four-
dimensional dynamics. Work regarding this issue will be
presented elsewhere.
At this point, it is natural to ask ourselves what the

relationship between this M -algebra or M -algebra-like
transgression theories andM -theory could be. It has been
proposed that some CS supergravity theories [1–3, 23] in
eleven dimensions could actually correspond to M -theory,
but the potential relations to standard CJS supergravity
and string theory remain unsettled. As already discussed,
in order to solve these problems it might be wise to take
into account the fact that theM -algebra is but one possible
choice within a family of superalgebras. Other members
of this family (obtained from osp (32| 1) using different
Abelian semigroups, for instance) might also play a role in
finding a truly fundamental symmetry.
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